what is soil health

What Is Soil Health?

Soil is such a complicated topic. Healthy soil even more so. In this four-part blog series, we outline the factors that make up the living, breathing entity that we call soil. This first section of the series will go deeper into the definition of Soil Health, and following this we will explore The Role of Beneficial Nematodes, The Role of Beneficial Protozoa, and The Importance of Organic Matter.

Defined by Function or Complexity?

Soil health is often described by how it functions, rather than what it is. Soil is a very complex system that we are learning more and more about every day thanks to researchers in all parts of the world. Organic matter, microorganisms, and plants themselves all play a part in contributing to a healthy soil system, and we will discuss their roles in depth throughout this series.

Dr. Mark Kibblewhite, from Cranfield University in England defines soil as "a multicomponent and multifunctional system, with definable operating limits and a characteristic spatial configuration." Which, broken down, means that soil has many properties and functions. Its optimal health is dependent on the alignment of its biological, chemical and physical structures. The characteristics of a specific area's soil are dependent on the parent rock, climate, topography, and soil biology that is present. Soil is a vital living ecosystem full of biological activity.

the soil is full of living organisms

Conventional agricultural practices have, over time, changed the alignment of the natural chemical, biological, and physical characteristics to obtain higher crop yields at the expense of soil health and its long-term fertility. Even in a backyard garden, soil is disturbed by pulling up roots of spent vegetables plants, raking and hoeing the garden beds to make them smooth for future planting. In order to realign these soil characteristics, we have to know more about the basic biological, physical, and chemical needs of healthy soil.

Biological Characteristics of Healthy Soil

Soil is only as healthy as its biological inhabitants. There are billions of microscopic organisms in healthy soil. Their purpose is to live and multiply, and as in many other parts of nature, smaller organisms typically act as prey for larger ones.

Microorganisms also form symbiotic relationships with plants to supply nutrients and water in exchange for sugars (or root exudates) from the plant. Most soil bacteria and fungi live in the rhizosphere (plant root zone). Arbuscular mycorrhizal fungi (AMF) spores germinate, infect the plant root, and form structures within the root. AMF grow hyphae far beyond the plant root zone to acquire water and nutrients for the plant in exchange for root exudates. All soils contain both beneficial and pathogenic microorganisms. When healthy soil is in balance, no particular microorganisms become overwhelming; they function as a cyclical ecosystem, which is particularly important for healthy plant growth.

There is more to soil than its biological properties; These microorganisms are present because they are necessary to break down the chemical and organic constituents of healthy soil.

Chemical Characteristics of Healthy Soil

Soil comes from rock, but not necessarily the rock that is present far below the soil in that particular place. Through wind or water erosion the topsoil of a particular field may be radically different from the bedrock. Glaciers deposited a great deal of rock that has become soil far from its parent rock. Soil can also be deposited through human actions.

But soil is more than just rock. Rocks are made up of minerals, and there are thousands of different combinations of minerals, which are made up of chemical elements. There are only 118 chemical elements according to the Periodic Table. There are a number of elements that are assumed to be in the soil; oxygen (O), hydrogen (H), and one absolutely necessary for life on earth - carbon.

chemical characteristics of healthy soil

The chemical characteristics of soil are the remnants of the rock it came from. Soil has a large number of chemicals, some of which are necessary for plant growth and some are not (or at least their use has not yet been discovered by soil scientists).

Using plant growth function as a yard stick, soil scientists have termed soil chemicals “nutrients.” And in the realm of soil science there are two types of nutrients; macro and micro nutrients. There is debate among scientists about how some of these nutrients should be classified but all agree they are necessary for healthy plants.

Nitrogen (N), phosphorus (P), and potassium (K) are considered the three big macronutrients. They play an important role in the success of the chemical fertilizer industry as they are necessary in larger amounts than other nutrients for plant growth. When health is restored to the soil through regenerative practices, there is typically a reduced need to add in these chemical inputs.

Many soil scientists also classify sulphur (S), calcium (Ca), and magnesium (Mg) as macronutrients. All 6 of these elements are necessary for plant photosynthesis, chlorophyll production, and many other plant growth processes. Without them, your crop will be stunted and have a low yield.

Micronutrients are necessary in small quantities for plant growth, but deficiencies of these elements are common in certain soil structures and terrains. Molybdenum (Mo) helps plants metabolize N. Copper (Cu) is a dual-purpose element – it is necessary for enzyme formation for chlorophyll as well as a fungicide (killing plant pathogens but also destroying beneficial biological indicators of the health of their soil). Boron (B), manganese (Mn), iron (Fe), zinc (Z), nickel (Ni), and chlorine (Cl) are all necessary in very small amounts for chlorophyll production and plant growth.

Essential is a very selective word – the need for these particular elements depends on the crop and other soil components. Sodium (Na), cobalt (Co), silicon (Si), and selenium (Se) fall into this category of “are they necessary or not?”. Soil is the basis for human existence as it is where we grow almost all our food, and I have only accounted for 18 of the 118 elements on the periodic chart. Where are the 100 other elements? Perhaps we have just not yet discovered a “use” for them in soil for plant growth...

The elements from weathered rock and microorganisms do not necessarily give us all we need to have soil; particles create structure in the soil and any given soil will have its own soil microbes and nutrient availability.

The Structure of Healthy Soil

Rocks weather by chemical or physical means. Raindrops on a rock will weather it both physically with the force of the rain and chemically because most rainwater is slightly acidic. Soil type and particle size is determined by the type of rock and the type of weathering. When sandstone weathers it becomes sand and has the largest particle size. When granite or basalt rocks are exposed to surface conditions, they create the basis for clay soils. A single clay particle can only be seen with a microscope. There is a third type of soil particle and that is silt. It is formed by physical breakdown of rocks by climatic and environmental conditions, like rain, winds, animals digging to name a few. Silt is rarely found as a specific soil. Because it is formed by environmental factors it is usually found in combination with sand or clay. Silt will create more pore structure in clay and help sandy soil to form aggregates.

The structure of healthy soil is partially dependent on soil particle size but mainly on the biological and chemical processes that take place within that structure. In the process of living and reproducing, microorganisms modify soil structure. Bacteria produce gooey substances to clump small soil particles, creating microaggregates, to protect them from desiccation, and predators. Fungi hold these microaggregates with their hyphae to create macroaggregates.

In the process of living, biological inhabitants of the soil break down organic matter, their food source. Organic matter contains carbon, essential to all life on earth, and many nutrients in non-plant-available forms. Soil biology converts those nutrients into plant available forms while improving soil structure. The biology in the soil performs multiple functions.

The biology found in the earth's soil

Particle size affects the amount of pore space between the particles. That space is filled with air, water, microorganisms, and organic matter. Sand, with large particles, has large pore spaces and a lot of the biological and chemical matter leaches away with rain.

Clay particles, on the other hand, are so small that the pores fill up quickly with air and water. After a rain, clay particles will hold onto the water. Pooling of water may appear on the surface. This leaves no room for air and creates an imbalance for plant growth and the health of the soil microorganisms. If the clay soil has a small amount of silt, which has larger particles, then pooling may not occur. But if the soil is waterlogged for too long the type of microorganisms will change from aerobic to anaerobic.

Practices That Destroy Soil Health

Soil health is a complicated affair. While we may not know all the factors that go into soil health, there are a few practices that we can say for certain do contribute to degrading soil health. The mineral component of soil is only accessible to plants if the biological component is alive and well. Microorganisms convert organic minerals into inorganic nutrients and therefore available for plant uptake. Tillage practices destroy microorganisms and pulverize rock. Nature also grinds rocks into smaller pieces but not on the soil surface and not as vigorously. It takes a day to till a field with today’s farm equipment, it takes thousands of years for nature to do the same thing.

In the process nature has allowed the biological and chemical processes to be dominant. In this way a rich dark topsoil, or humus is created. The minerals in the sublayers are brought to the surface by plant roots to be available for shallower rooted plants. 

Nature does not disturb the surface of the soil and maintains a plant cover just as erosion does not happen in a natural ecosystem. Healthy soil is site and vegetation specific but always has a strong microbial community, lots of naturally occurring nutrients, and an extensive web of plant roots that benefit from the interconnected nature of all components within.

In our next section of this series, we will go deeper into a most important microorganism in soil: The Beneficial Nematodes and how to attract and retain them for optimal soil health.

This is part 1 of a 4 part series, you can read the rest of the series here:

« Back to Soil For Humanity

Welcome to Soil For Humanity!

'Soil For Humanity' is an organization started by Rogitex as a free educational resource about Organic and Sustainable Farming Practices.

Stay "In The Know"

by Subscribing To The Soil For Humanity Blog

Recent Posts

Easy-to-Grow Options for a Medicinal Herb Garden
Easy-to-Grow Options for a Medicinal Herb Garden
Growing these herbs in your home garden will provide you will a use...
High Value, High Nutrition Crops to Grow at Home
High Value, High Nutrition Crops to Grow at Home

With food prices soaring in most...

8 Plants That Improve Soil Quality
8 Plants That Improve Soil Quality

Did you know Soil Health can be ...

The Nine Main Botanical Families Explained
The Nine Main Botanical Families Explained
Exploring the nine main botanical families in detail, along with gr...
The Use of Peat Moss in Sustainable Agriculture
The Use of Peat Moss in Sustainable Agriculture

When talking about sustainabilit...

Heed the Weeds: What Weeds Tell Us About Soil
Heed the Weeds: What Weeds Tell Us About Soil
Weeds are often seen as a nuisance in the garden, but they have muc...

Post Categories

  • BBB - Better Business Bureau Rating A+
  • florida fruit and vegetable association
  • approved by ecocert inputs
  • CDFA - regisetred organic input material
  • western growers
  • OMRI listed for organic use